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Abstract. Quantum scattering is studied in a system consisting of randomly distributed point scatterers
in the strip. The model is continuous yet exactly solvable. Varying the number of scatterers (the sample
length) we investigate a transition between the ballistic and the localized regimes. By considering the
cylinder geometry and introducing the magnetic flux we are able to study time reversal symmetry breaking
in the system. Both macroscopic (conductance) and microscopic (eigenphases distribution, statistics of S-
matrix elements) characteristics of the system are examined.

PACS. 72.20.Dp General theory, scattering mechanisms – 05.45.+b Theory and models of chaotic systems
– 72.10.Bg General formulation of transport theory

1 Introduction

A rapid technological progress in producing small semi-
conductor and metallic samples, which have the size of the
electron phase coherence length, has stimulated extensive
investigations of transport through disordered mesoscopic
systems [1,2]. Disorder in mesoscopic nanostructures, like
for example quantum wires, can be induced by adding
some impurities, which serve as electron scatterers and
hence modify the electron transport properties. The sam-
ple length L and the elastic mean free path, le are im-
portant parameters for classification of various possible
regimes of scattering. In a sample, which size L is of the
order of le (the ballistic regime), the traveling electron
encounters only a few scattering events on its path. How-
ever, for samples much longer than the mean free path,
the multiple scattering becomes increasingly important.
In addition to that, the number of degrees of freedom in
the system and the energy of the incoming electron also
determine the transmission properties.
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Anderson localization is probably the most important
phenomenon relevant for such studies [3]. Its generality
became fully appreciated after the formulation of the scal-
ing theory [4]. In particular, this theory predicts that ex-
tended states (which may lead to the metallic, quantum
diffusive regime) are possible only for three-dimensional
(3D) and weakly disordered systems, while in one- (1D)
or two-dimensional (2D) systems the states are exponen-
tially localized (in the absence of external fields). Special
topical meetings devoted to the Anderson localization [5]
have covered both theoretical aspects and experimental
manifestations of that phenomenon.

A considerable progress has been recently made in un-
derstanding transport properties in disordered samples on
grounds of the Random Matrix Theory (RMT) [6] (for a
recent review see [7]). Moreover, the RMT approach has
been successful in explaining statistical properties of fluc-
tuations occurring in the regime of parameters where the
corresponding classical scattering exhibits chaos in the in-
teraction region (the so-called chaotic scattering) [8–11].
More general ensembles of random matrices were used to
describe quantum systems in the localized regime [12]. In
such systems classically chaotic motion corresponds to the
disorder in mesoscopic nanostructures.

Not only were the transport phenomena related to
electrons under experimental and theoretical scrutiny.
A great deal of effort by theorists and experimentalists
has been devoted to the electromagnetic wave transport
through microwave cavities and guides [8,10,13,14]. Let us



400 The European Physical Journal B

mention that the Anderson localization has been also ob-
served for light scattered in a random medium [15].

So far, numerical studies of a transition from the ballis-
tic to the localized regime have been mainly restricted to
tight-binding models. As typical examples one may con-
sider [16,17] for the 1D case, [18] for the 2D model or
[19] for 3D calculations. Nevertheless, such models may
be regarded as discrete approximations to a continuous
scattering problem. While fully appreciating all the re-
sults obtained within these approximate models, it is de-
sirable to compare them with those coming from exactly
solvable systems (if such are available). In this paper we
shall consider such an exactly solvable system, namely a
two dimensional strip with N randomly distributed point
scatterers. The system has been recently introduced in
[20], where it has been shown that, the S-matrix eigen-
phases obey the Wigner near neighbour statistics for a
particular choice of parameters. The aim of present pa-
per is to show a more detailed study of that model, which
reveals a smooth transition from the ballistic to localized
regime as a number of scatterers (or the sample length) is
varied. We investigate both the macroscopic (conductance
G) and the microscopic properties of the system (statisti-
cal properties of the S-matrix).

It is known for a long time that in the 2D case a proper
quantum diffusive regime does not exist typically [4]. How-
ever we show that in the transition regime, which is be-
yond the ballistic regime and yet far from the localized
one, the system exhibits similar properties to those ex-
pected when the multiple scattering occurs. Thus we are
able to observe some resemblance to the behaviour which
is typical for the quantum diffusive regime. Let us men-
tion here that this finding is in full agreement with earlier
studies [16–18].

The 2D strip model is relevant in description of the
disordered transport when the time reversal symmetry is
conserved. However this symmetry can be easily destroyed
by introducing a magnetic field into the system. In order
to demonstrate the capability of our model, we show also
that by a change of the geometry and considering a cylin-
der with the axial magnetic field, it is possible to extend
our solvable approach so as to be able to investigate the
influence of the magnetic flux inside the cylinder on the
scattering occurring on its surface.

The paper is organized as follows. Section 2 gives an
overview of the both versions of the model: with and
without the magnetic field. In this section we define im-
portant physical parameters characterizing the scattering
system. The conductance within the model is studied in
Section 3, whereas the S-matrix properties are presented
in Section 4. Finally, the last section brings the summary
and conclusions.

2 The scattering model

A disordered mesoscopic sample is modeled by a 2D hard-
wall strip with a finite number N of point scatterers [20].
The geometry of the strip (the scattering region) is de-
scribed by its length L, which can be varied, and its

L(a)

(b)

B

Fig. 1. Schematic diagrams of both models analyzed through-
out the paper. (a) Represents the time reversal model consist-
ing of N point scatterers randomly distributed over the strip
of width π and length L. (b) Shows a cylinder of the perimeter
2π with N point scatterers on its surface. The magnetic flux
inside the cylinder breaks the time reversal invariance.

width which is set at the value W = π (results for an
arbitrary W may be obtained by a simple rescaling [20]).
The point-like scatterers are randomly and uniformly dis-
tributed inside the strip with positions xj = (xj , yj) ∈
(−L/2, L/2)×(0, π), for j = 1, ..., N (as shown in Fig. 1a).

It is assumed that the scattering in the strip is elas-
tic and the wavefunction vanishes on the horizontal strip
boundaries (hard walls) so that

ψ(x, 0) = ψ(x,W ) = 0, for all x. (1)

Appropriate boundary conditions [20] are also set on small
circles of radius aj surrounding the jth point scatterer.
Everywhere except the inside of the circles the Hamilto-
nian of the system corresponds to the free propagation,
H0 = −∆ (in the units ~/(2m) = 1). Together with the
boundary conditions mentioned above this procedure al-
lows for a rigorous construction of a self-adjoint extension
of the Hamiltonian in the presence of singular point per-
turbers. We refer the mathematically oriented reader to
[20] for details of this particular model, while the exten-
sive discussion of mathematical techniques used to solve
singular point interaction problems may be found in [21].
For the purpose of the present study, it suffices to say that
the real parameters αj characterizing the self adjoint ex-
tension are related to aj by αj = − ln(aj)/2π [22]. In the
following we shall take these perturbers to be identical
by setting αj = α for all j. A large positive value of α
corresponds to a weak perturbation, and in particular the
perturbation can be removed by taking a limit α→∞ so
that the self adjoint extension is simply equal to H0.

The number of channels M in which the electron may
enter the system from either side of the strip is equal to
the integer part of the length of the total wave-vector
k of the incoming electron. Let alin and arin denote the
M -component vectors representing the waves incoming
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from the left and the right side of the strip, respectively
(depicted in Fig. 1a as the two arrows pointing towards
the strip from left and right). The outgoing waves from
the left and right side of the strip (shown in Fig. 1a by
the two arrows pointing outwards) are described by alout
and arout, respectively. The scattering process can be de-
scribed by a 2M × 2M unitary matrix S. The S-matrix
relates amplitudes of the incoming waves with those which
represent outgoing ones so that {alout, a

r
out} = S{alin, a

r
in}

and therefore it has the following block structure

S =

(
r t
t′ r′

)
, (2)

where r and r′ are reflection matrices whereas t, t′ are
transmission sub-blocks, each of them having size M×M .

The advantage of the model with singular point-like
perturbers is that explicit formulae for the S-matrix ele-
ments are available [20]

rnm(E) =
i
√

2π

N∑
j,k=1

[Λ(E)−1]jk
sin(myj) sin(nyk)√

km(E)kn(E)

× exp[i(kmxj + knxk)] (3)

and

tnm(E) = δn,m+
i
√

2π

N∑
j,k=1

[Λ(E)−1]jk
sin(myj) sin(nyk)√

km(E)kn(E)

× exp[−i(kmxj − knxk)], (4)

where E is the energy of incident electrons. The N × N
matrix Λ(E) is given by its elements

Λjj(E) = α+
1

π

∞∑
n=1

[
1

2n
−
i sin2(nyj)

kn(E)

]
, (5)

and

Λjm(E) = −
i

π

∞∑
n=1

exp(ikn(E)|xj − xm|)

kn(E)

× sin(nyj) sin(nym), j 6= m. (6)

The longitudinal momentum kn satisfies the relation

k2 = k2
n + n2, (7)

hence for n > k, it becomes imaginary (kn ∼ in), what
ensures the convergence of the series (5).

Conductance in the strip can be calculated using the
famous Landauer formula

G = G0

M∑
n,m=1

Tr{tt†}, (8)

where G0 = e2/h (we omit the spin degeneracy factor).

Since the matrix S is unitary, Tr{tt†} = Tr{t′t′†} = M −
Tr{rr†}, so the transmission (reflection) coefficients for

electrons entering the strip from both sides are equal. In
the following we work in dimensionless units and omit the
proportionality factor G0.

In order to break the time reversal symmetry we in-
troduce a magnetic field into the model [20]. It is conve-
nient to modify the strip with scatterers into a cylinder of
length L and perimeter 2π, as shown in Figure 1b. Peri-
odic boundary conditions read now

ψ(x, 0) = exp

(
i
ΦB

2π

)
ψ(x, 2π)

∂

∂y
ψ(x, 0) = exp

(
i
ΦB

2π

)
∂

∂y
ψ(x, 2π), (9)

where ΦB is the magnetic flux inside the cylinder. Since
the cylinder can be mapped onto the rectangle Ω =
[0, L] × [0, 2π), the solutions obtained in the case of the
strip can be modified accordingly – for more details see
[20]. The longitudinal momentum depends in this case on
the magnetic flux, so equation (7) has to be replaced by
the following

kn(E)=
√
E−(n+ΦB/(2π))2, n=0,±1, ...,±M.

(10)

Let us point out that both versions of the model are con-
tinuous and exactly solvable in the sense that the scat-
tering matrix elements can be written analytically (albeit
in terms of infinite series). We believe therefore that this
makes the model extremely interesting and useful for in-
vestigating the statistical properties of S-matrices and for
analysis of conductance in disordered mesoscopic media.

In order to get a proper statistical sample of data we
average the studied properties over several realizations of
random positions of N scattering points for both versions
of the model (the strip and the cylinder with the magnetic
flux). We choose the local density of the scattering points,
ρ, to be constant by setting L = N (this choice yields
the scatterers density ρ = 1/π for the strip and twice as
smaller value for the cylinder model). Hence throughout
this paper we shall use the sample length L to parameter-
ize the model. We consider the perturbers to be strong and
take α = 0 (recall that α→∞ corresponds to a vanishing
perturbation).

As it has been pointed out in the introduction, the elas-
tic mean free path le is yet another important parameter
which determines the regime of the scattering behaviour.
It is therefore crucial to establish its value for the dis-
cussed model. The total cross-section σ for the scattering
on a single point-like impurity in 2D may be obtained
from an appropriate formula valid for the scattering in
the plane [21] and for α = 0 it reads

σ =
π2

k

1

[γ + ln(k/2)]2 + π2/4
, (11)

where γ ≈ 0.577... is the Euler constant. The mean free
path itself can be expressed in terms of the total cross
section and the density of point-like impurities le = 1/ρσ.
Note that, because the density ρ is constant as a result
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Fig. 2. (a) The mean conductance 〈G〉 as a function of the
length of the strip L (the number of point scatterers N = L)
for M = 5 open channels. The numerical data, each represent-
ing an average over 400 realizations are represented by filled
circles. For a sufficiently long sample the exponential decay of
〈G〉 with L is observed. The dashed line yields the fit of the
localization length ξ = 100 ± 3. Thin horizontal line shows,
for a reference, 〈G〉R = 2.27 value assuming that S pertains
to the COE. (b) Shows a part of the data in the transition
between the ballistic and the localized regimes. Observe that
a power-law dependence of 〈G〉 on L quite well approximates
the behaviour of the mean conductance in this region. The
horizontal straight line represents the RMT value, the same as
in (a).

of the choice N = L, the mean free path has a fixed value
for a given incident energy (or the value k of the wavevec-
tor). This allows for approaching various regimes of the
scattering simply by changing the length of the strip to-
gether with the number of the randomly distributed im-
purities.

3 Conductance of the strip

To achieve the ballistic (or quasi-ballistic) regime, the
sample length L (equal, in our model to the number of
point like scatterers N) should be of the order of the elas-
tic mean free path le. The latter strongly depends on the
wavevector k (the integer part of which gives the num-
ber of open channels M) – compare equation (11). In

most of the discussed numerical examples we shall take
k = 5.5708, which corresponds to M = 5. This yields
le ≈ 8.9 for the strip model.

Once we have that N � le, the multiple scattering in
the sample becomes possible. Incoming waves are strongly
distorted in this regime. Since quantum diffusion does not
appear in 2D [4] we expect a smooth transition from the
ballistic to the localized regime for a sufficiently large
L = N .

The Λmatrix elements are given by infinite sums, com-
pare equations (5, 6). For realistic computation times (all
calculations have been performed on a personal computer)
we have to restrict the analysis to moderate L values. For
that reason we have chosen M = 5 in most of our numer-
ical studies.

Figure 2a shows on the logarithmic scale the depen-
dence of the mean conductance 〈G〉 on the length of the
strip L. Observe that for L ≥ 100, the conductance de-
cays exponentially with L as expected for sufficiently long
samples in the localization regime. A fit to the exponential
decay of the mean conductance, 〈G〉 ∝ exp(−L/ξ) (shown
in the figure with a broken line), yields an estimate for the
localization length ξ = 100 ± 3. The mean conductance
for shorter samples is presented in Figure 2b in the dou-
ble logarithmic scale. Note that for values L ∈ (10, 100), a
straight line well approximates the data, thus yielding the
power-low dependence on the sample size L, 〈G〉 ∝ L−c

with c = 0.90± 0.05. This is not, however, an indication
of the quantum diffusive regime (where according to the
theory 〈G〉 should be proportional to L−1), but it rather
stems from the fact that the sample is shorter than the
localization length ξ. Thus the localization (depending on
the quantum interference occurring on the length scale of
ξ) cannot fully set in. Therefore, what we really observe
here is a transition from the ballistic regime (dominated
by direct processes) to a fully localized situation.

The introduction of point perturbers into a classically
integrable system leads to a seemingly “quantum chaotic”
behaviour for a finite value of ~ – the so-called wave chaos
[23,24]. Hence, it is interesting to compare the behaviour
of our model with point scatterers with that predicted for
chaotic scattering models. For the sake of such analysis,
it has been conjectured that the Random Matrix Theory
[6] approach correctly captures the statistical properties
of the S-matrix [8,10] (for the equilibrated component –
using the nuclear physics language [25], or after unfold-
ing the S-matrix – see next section – using the language
typical for RMT applications to bound systems). On the
ground of this conjecture statistical properties of the uni-
tary matrix S may be represented by random matrices of
Dyson circular ensembles [26].

Leaving a more detailed microscopic comparison for
the next section, let us consider here the mean conduc-
tance and its variance. For the S-matrix pertaining to the
Circular Orthogonal Ensemble (COE), which is relevant
for the strip model preserving the time-reversal symmetry,
the RMT yields a value for the mean conductance (in-
cluding the weak localization correction) and its variance
[7,10] which may be expressed in terms of the number
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Fig. 3. The variance of the conductance distribution for the
same parameters as in Figure 2. The dashed line corresponds
to the RMT prediction (see text). Note that in the transition
region Var(G) remains close to the RMT value and is only
weakly dependent on L.

of channels M as follows

〈G〉R =
M

2
−

M

4M + 2
, (12)

VarR(G) =
M(M + 1)2

(2M + 1)2(2M + 3)
· (13)

The above formulae yield 〈G〉R = 2.27 and VarR(G) =
0.1144, when the number of channels M = 5 is taken.

Observe that while the mean conductance rapidly
passes through the RMT value (depicted with a horizontal
solid line in both panels of Fig. 2), the behaviour of the
variance is markedly different (compare Figs. 2b and 3 –
in the latter the value of VarR(G) is depicted by a dashed
horizontal line). The variance rapidly increases when L
exceeds the value corresponding to the mean free path le,
then saturates in the vicinity of the RMT value and af-
terwards again rapidly falls down for L > ξ. Thus in the
“transition” region defined by the interval le < L < ξ,
a rapid, almost linear change on the logarithmic scale in
〈G〉 is accompanied by a relatively weak dependence of the
Var(G) on L – a phenomenon closely resembling universal
conductance fluctuations in metallic samples.

In our case the direct processes strongly influence 〈G〉.
Intuitively, in the transition region they should affect the
variance to a lesser extent. In this region the localization
does not set fully yet (since the sample is too short) and
we observe the multiple scattering (typical for a chaotic
process) which manifests itself in the value of the variance
being close to the RMT prediction. We mention, however,
that for the problem studied we are not in the semiclassical
regime since the number of open channels is too small
as well as the singular perturbers do not have a proper
classical limit (that is in such a limit, their perturbing
effect disappears completely).

In the localization regime, the conductance becomes
vanishingly small, it is therefore much more informative
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Fig. 4. The mean logarithmic conductance 〈lnG〉 (asterisks)
and its variance Varln (open circles) as a function of the strip
length L for M = 5 open channels. The inset shows the depen-
dence of the variance on the mean – the theoretical prediction
for the localized regime is depicted with the line. For more
discussion see text.

to study not the conductance itself but its logarithm. In
Figure 4 both the mean logarithmic conductance 〈− lnG〉
(asterisks) and its variance (circles) are presented. For a
strip length taken from the interval L ∈ (25, 100) (the
transition region) both the mean and the variance of the
logarithmic conductance take approximately the same val-
ues. On the other hand, for L > 200 there is a clear growth
of the variance Varln = 〈[lnG−〈lnG〉]2〉 which satisfies in
this range of L values the relation

Varln = 2〈− lnG〉 (14)

predicted for localized regime [7,19,27,28] as shown in the
inset with a solid line. In fact, the linear regression fit
for the numerical data yields the slightly smaller value
1.90± 0.09 for the slope.

Not only the mean conductance and its variance but
also the distribution of the conductance may be studied.
According to the predictions of the RMT [7,19], in the
quantum diffusive regime the distribution of the conduc-
tance, P (G), is a Gaussian for a large number of chan-
nels M � 1. Nevertheless, some results for the trans-
port through chaotic cavities [10] indicate that already
for M = 3 the conductance distribution appears to be ap-
proximately a Gaussian. We observe a similar behaviour
in the transition region (between the ballistic and local-
ized regimes) discussed above. Exemplary data for such
a case are displayed in Figure 5a, where the conductance
distribution is shown for L = 20 (it has been obtained
from 104 configurations of random scatterers). In the fig-
ure a thin solid line shows a Gaussian distribution with
the mean and its variance calculated from that statistical
representation. Thus not only the variance but the whole
distribution of the conductance in the transition region
behaves in the way associated typically with the metallic
regime.

The distribution P (G) changes with an increase of the
number of the scatterers (and the length of the strip)
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Fig. 5. Conductance distributions, P (G), obtained for M = 5
and for the length of the sample (strip) L equal to (a) 20, (b)
200 and (c) 400 (N = L in each case as usual). Data in (a) are
drawn in the linear scale and are compared to the normal dis-
tribution. Data in (b) and (c) obtained for the localized regime
are displayed as P (lnG), while the thin solid line in both pan-
els represents theoretically predicted log-norm distribution for
the localized regime.

and once it reaches the localized regime, it can be ap-
proximated by a log-normal distribution [7,19,29]

P (lnG) =
1√

2πσ2
ln

exp

[
−

(lnG− 〈lnG〉)2

2σ2
ln

]
(15)

with the mean and variance related to each other by equa-
tion (14). The distribution (15) of the logarithmic conduc-

tance is due to the nature of the localization, where the
total wavefunction can be super-imposed of partial wave-
functions, which have very small overlaps. Thus, the total
transmission probability is given by a product of compo-
nent transmissions, which explains the origin of a Gaus-
sian distribution of logarithms of the conductance.

In Figure 5 – panels (b) and (c) – we present the dis-
tribution of the logarithmic conductance for L = 200 and
L = 400, respectively. Let us mention that the log-normal
distribution (15) (depicted in both panels by a thin solid
line) well describes the conductance fluctuations only in
the latter case. Although in Figure 2 we have seen clearly
the indications of the localization occurring for L > 100, it
fully sets in for much longer samples for which additionally
the logarithmic conductance obeys closely the log-normal
distribution.

Let us partially summarize the results obtained
directly from the studies of measurable quantity – the
conductance of the strip. For short samples, L ≈ le, the
scattering is dominated by direct processes – the ballistic
scattering occurs. For long samples the mean conductance
decreases exponentially with L yielding the localization
length ξ ≈ 100 (for M = 5 case studied). The relatively
broad transition region le < L < ξ exhibits a behaviour
reminiscent of the quantum diffusion in 3D metallic sam-
ples: an approximately linear decrease of the mean con-
ductance 〈G〉 with the inverse sample size L−1 (the Ohm
law, a similar behaviour for a tight binding 1D model has
been reported in [16]), the variance is roughly independent
of the mean conductance (an analog of the universal con-
ductance fluctuations), and finally the conductance has
a Gaussian distribution. It is interesting to see whether
the microscopic properties (S-matrix elements, its eigen-
phases) likewise support that description of the scattering
regimes.

4 Microscopic properties

The most well-known tool in studies of statistical proper-
ties of a sample of levels is the nearest neighbour spacing
distribution [6,30]. For an ensemble of unitary S-matrices,
the corresponding measure is the distribution of eigen-
phase spacings (i.e. writing the eigenvalues as exp(iθj) we
consider the distances θj+1−θj for j = 1, ..., (2M−1), for
a 2M × 2M scattering matrix). For the COE a good ap-
proximation for the eigenphases spacing distribution is the
Wigner surmise [30]. Such a distribution is expected also
for the chaotic scattering occurring in the ballistic regime
[8,10], provided that the direct processes are eliminated
(i.e. the processes which contribute to a non-vanishing av-
erage over the ensemble, 〈S〉 6= 0). In the case of 〈S〉 = 0
one expects an uniform distribution of eigenphases over
the interval [0, 2π).

When the direct processes are important one should
first eliminate their contribution from the S-matrix (i.e.
“unfold” this matrix) by considering Sfl = S−〈S〉, where
〈S〉 is the matrix obtained by an arithmetic mean of S-
matrix elements over different realizations of the disor-
der. Several procedures for “unfolding” the S-matrix have
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Fig. 6. The spacing distribution P (s) obtained for unfolded
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direct processes dominate the scattering (the length of the strip
L = 5 is smaller than the mean free path le, the number of open
channels M = 5). The numerical data shown in the form of a
histogram are compared with the Wigner (thin solid line) and
the Poisson (dashed line) distribution.

been proposed [17,25,31] – we have followed the prescrip-
tion of Friedman and Mello [31]. Let us mention that in
[18] another unfolding procedure, borrowed from studies
of bound systems [32] has been used.

Let us consider first an extremely short sample of the
length L = 5. The resulting spacing distribution P (s) af-
ter the unfolding procedure is shown in Figure 6 (a heavy
line). It is well-approximated neither by the Poisson (a
dashed line) nor the Wigner distribution (a thin solid line),
though the latter far better fits to the data than the for-
mer one especially for small spacing values s. For L < le,
at most one scattering event perturbs the incoming wave-
function, so there is no reason to expect a good agreement
with RMT predictions.

As soon as we enter the transition region (le < L < ξ,
see the previous section), the direct scattering ceases to be
the dominant process, and the multiple scattering comes
into play. The initial wavefunction becomes strongly dis-
torted while passing through the sample and indeed the
spacing distribution is much better approximated by the
Wigner distribution (compare Fig. 7 displaying data for
L = 40). This is consistent with the discussion presented
in the previous section (a Gaussian distribution of the
conductance, an approximate independence of its variance
on L).

As mentioned above, in the transition region, where
the multiple scattering is important, a coherent backscat-
tering should appear for the time reversal system due to
interference between multiple scattering paths passing in
the opposite directions. This effect is a manifestation of
the “weak localization” and has been observed in earlier
studies, both for electron [5,33] and light waves [15]. In
the 3D case it appears for energies above the transition to
the localization (when kle > 1).

A similar effect can be seen when S-matrices are
treated within the RMT approach. The mean squared
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Fig. 7. Same as Figure 6 but data are for L = 40, i.e., in the
transition region between the ballistic and the localized regime.

modulus of matrix elements averaged over the COE/CUE
ensembles (the latter being the Circular Unitary Ensem-
ble) reads (e.g. [7])

〈|Smn|
2〉β =

1− (1− 2/β)δmn
2 M − 1 + 2/β

, (16)

with β = 1 and 2 for the COE and CUE, respectively. The
presence of an enhanced diagonal in this distribution for
m = n is a distinct footprint of the time reversal symmetry
(see also [34,35]).

In order to test whether the weak localization effect
appears in the transition region we turn to the cylinder
model since it allows us to perform breaking of the time-
reversal symmetry by introducing the magnetic flux (see
Sect. 2). In Figure 8 the scattering probabilities |Smn|2,
averaged over an ensemble of 103 S-matrices (each of
them corresponding to a particular configuration of ran-
dom point scatterers) are presented for the case corre-
sponding to the fixed momentum k = 10.5708 and the
cylinder length L = 200. Since the density of scatterers
is ρ = 1/2π, using (11) we obtain le ≈ 50. Indeed, the
enhancement of the backscattering to the same channel is
clearly visible in the case of null magnetic flux (see panel
(a) – the anti-diagonal of the reflection sub-blocks rather
than the diagonal elements are twice as larger than the
off-diagonal elements due to the choice of the channel ba-
sis representation [20] suitable for the cylinder version of
the model). The selective enhancement of the reflection
is destroyed as the axial magnetic field is turned on as
demonstrated in panel (b), showing results for the mag-
netic flux ΦB/(2π) = 0.1.

It is worth emphasizing that in Figure 8 there is also
visible a clear enhancement on the diagonal of the trans-
mission matrix which is an indication of the presence of di-
rect processes (the data presented are not unfolded). Also
the off-diagonal elements of reflection matrices are several
times bigger than the transmission matrices elements.

Let us consider now the limiting case of an extreme
localization. The incoming wave is fully reflected, that
is t, t′ ≈ 0 and the reflection sub-blocks r, r′ are uni-
tary (this property of S-matrix was discussed earlier
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Fig. 8. Scattering probabilities |Smn|
2, averaged over 103

configurations of random points, for the cylinder model with
k = 10.5708 and L = 200. (a) Shows a 3D diagram for null
magnetic flux, ΦB = 0, while (b) shows data for this system
with the magnetic flux Φb/(2π) = 0.1 inside the cylinder. Note
the difference in the diagonal elements corresponding to the
reflection blocks (the anti-diagonals rather than the diagonals
of sub-matrices r, r′ are enhanced due to a specific choice of
the channel ordering used in the case of the cylinder – compare
[20]). The number of open channels is M = 21 in both (a) and
(b).

in [17,18]). The reflection is a result of complicated scat-
tering events, hence both matrices r, r′ may be considered
as those pertaining to the COE (or CUE for the cylinder
model with the magnetic field). Actually, as discussed in
detail in [18], such a situation occurs for quasi-1D samples
only, the transverse dimensions of the sample lead to de-
viations from RMT predictions. Recall, however, that we
consider the strip of width W = π and the length L�W
so indeed we may consider this to be a quasi-1D situation.

The scattering matrix S, equation (2), in the fully lo-
calized case, consists thus of two independent diagonal
blocks, each pertaining to an appropriate circular ensem-
ble. Therefore spectral properties of the entire S-matrix
correspond to a superposition of two independent COE
(or CUE) spectra. The level spacing distribution for such

a case does not reveal any usual effect of level repulsion
but it is rather described by the Berry-Robnik distribu-
tion [36] for two disconnected chaotic regions of equal vol-
ume. While in [36] the time-reversal invariant situation is
mainly discussed, the same formalism is easily extended
for unitary ensembles. Approximating the spacing distri-
bution for the COE by the corresponding Wigner distribu-
tion (exact, strictly speaking for Gaussian 2× 2 matrices
only [30]) one easily obtains

PO(s)=
π

8
s exp

(
−
π

16
s2
)

erfc
(√π

4
s
)
+

1

2
exp
(
−
π

8
s2
)

(17)

for the approximate spacing distribution in this case. The
standard form, erfc(z) = (2/

√
π)
∫∞
z

exp(−t2)dt, for the
error function is used above.

Before presenting the numerical data let us point out
that the choice of the initial basis leading to the particular
form (2) of the scattering matrix is somewhat arbitrary.
Taking a different order of components in the vector de-
scribing the outgoing wave we may write {alout, a

r
out} =

S′{arin, a
l
in} where the scattering matrix S′ now has the

form

S′ =

(
t r
r′ t′

)
. (18)

Both forms (2, 18) of the scattering matrix describe the
same physical phenomenon. However, in the extreme lo-
calization regime (t, t′ ≈ 0) the statistical properties of S
and S′ are not the same. The matrix S′ consists of two
off-diagonal unitary blocks r and r′. We show in the Ap-
pendix that the eigenvalues of such a matrix are given
by

eig(S′) = {eig(
√
rr′),−eig(

√
rr′)}. (19)

If unitary matrices r and r′ pertain to the CUE (and are
distributed uniformly according to the Haar measure), so
does their product rr′. As a result of that, the spectrum of
S′ consists of two replicas of a CUE-like spectrum, rescaled
by the factor of two.

Let us assume that, for the time reversal version of
the model, r and r′ can be described by the COE. Using a
concept of composed unitary ensembles it was shown that
in such a case the product rr′ fulfills a weaker property.
It displays the COE-like spectrum, in spite of the fact,
that it does not pertain to the COE [37]. Thus the local
statistical properties of S′ (analyzed at the scale of mean
level spacings d�M) are the same as those of the corre-
sponding circular ensembles, in contrast to the properties
of S.

The spectral properties of S and S′ are different also in
a realistic case of a nonzero conductance. To demonstrate
that we present in Figure 9 numerical results obtained
for L = 800, i.e. far into the localization regime. Panel (a)
shows the spacing statistics P (s) for the matrix S whereas
panel (b) displays that statistics for the S′-matrix. It is
evident that the spacings distributions for S and S′ are in-
deed very much distinct, the former being quite reasonably
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Fig. 9. Comparison of the spacing distribution P (s) for the S-
matrix as defined by equation (2) (a) and that for S′ defined via
equation (18) (b) for long samples L = 800 and M = 5. While
the latter is well-approximated by the Wigner distribution (a
thin solid line in (b)), the former shows much better agreement
with the Berry-Robnik distribution (a thin solid line in (a))
corresponding to a superposition of two independent random
ensembles as further discussed in text.

approximated by (17) while the latter by the Wigner dis-
tribution (a thin solid line). It has to be emphasized that
this supports the conjecture that two uncoupled COE-like
matrices may represent both reflection sub-matrices.

This finding is also consistent with tight-binding model
calculations [18], where similar agreement has been found
for quasi-1D situations. It has been shown in that paper
[18] that when “transverse” dynamics becomes important
the number variance of S-matrix eigenphases, Σ2(d), ex-
ceeds that for two uncoupled COE’s. As discussed in [18]
only 0 < d � M range is interesting since all 2M eigen-
phases must fall in (0, 2π) interval. Hence, for the dis-
cussed numerically case, M = 5, we are limited to low
values of d only. As shown in Figure 10, in this interval
we observe quite nice agreement between Σ2(d) for reflec-
tion matrices of the strip model with L = 800 (a heavy
solid line) and predictions for the COE (a thin solid line).
However, for shorter samples, L = 200 (a heavy dashed
line), where the localization is not fully set as discussed in
the previous section, the number variance displays signifi-
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Fig. 10. The number variance, Σ2(d) for the reflection sub-
matrix r in the deep localization regime of the scattering: L =
800 and M = 5 (a heavy solid line). Note a nice agreement with
the COE prediction (a thin solid line). For shorter samples
L = 200 (a heavy dashed line), the number variance shows
disagreement with the COE behaviour for d > 1.5.

cant deviations from the COE behaviour for d > 1.5. Due
to a nonzero conductance the reflection matrices r and
r′ are not unitary, but the statistics of the eigenphases
can still be described by random matrices of circular en-
semble. This is no longer true for a larger conductance
(shorter length L of the strip).

5 Conclusions

In this paper we have discussed quantum scattering and
the transition from the ballistic to the localized regime
in the explicitly solvable model of point scatterers in the
strip. The model reproduces the Gaussian distribution of
the conductance in the diffusive regime and the log-normal
distribution when the length of the strip is large enough to
reach the localization regime. The number of point scatter-
ers which is necessary for representing the localized regime
strongly increases with the momentum of the incident elec-
tron (the number of open channels).

We find that the statistics of eigenphases of the S-
matrix is of the Wigner type not only, as expected, in
the diffusive regime, but provided a specific structure of
the S-matrix is taken, it may also reveal the distinctive
level repulsion property in the localized regime. This is in
contrast to the case of quantized autonomous chaotic sys-
tems for which dynamical localization manifest itself by a
Poissonian like level statistics [30]. Therefore, our results
demonstrate that the spectral properties of the scattering
matrix cannot be used as a sole criterion for the localiza-
tion. On the other hand, the localization in the system
manifests itself in the statistical properties of the reflec-
tion and transmission submatrices of S.

The results obtained within present model are in
full agreement with similar earlier studies [16–18]. How-
ever, while those studies were based on tight binding
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models (which necessarily discretize continuum) the
present model is continuous and yet explicitly solvable.

The model allows one to include also effects due to
a magnetic flux and thus to follow a gradual breaking
of the time reversal symmetry. It is also possible to in-
troduce a geometric reflection symmetry (for example by
drawing randomly the position of N/2 scatterers only and
taking the remaining half as their mirror image with re-
spect to the symmetry line) and analyze the symmetric
case discussed earlier in [38,39]. In addition, the model
may be used to analyze other statistical properties such
as the distribution of Wigner time-delays [14,40,41] or
other parametric properties of the S-matrix.

Finally, we would like to mention that the results of the
model discussed in the present paper, may be relevant also
for experimental studies. These might include systems like
quantum wires doped with a number of impurity atoms,
whose configurations can be randomize by a thermal pro-
cess [42]. In such a system, the conductance and its vari-
ance behaviour could be investigated with an increasing
number of impurity atoms (and the length of the sam-
ple). Another possibility is to carry out measurements in a
microwave domain, investigating the propagation through
waveguides with antennas [43], where breaking of the time
reversal symmetry has been recently realized experimen-
tally for microwave billiards [44]. In addition, an experi-
mental study of microscopic properties of the scattering
matrix also could be feasible, for example by looking at
the backscattering to the same channel as compared to
the reflection to any other channel, in the presence and
absence of the time reversal symmetry.
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Appendix

Let us consider the following algebraic lemma:

Lemma

Let A and B be M ×M unitary matrices and let C reads

C =

(
0 A
B 0

)
. (A.1)

Then the spectrum of C is given by

eig(C) = {eig(
√
AB),−eig(

√
AB)}. (A.2)

Proof of the lemma

Let eigenvalues and eigenvectors of
√
AB be denoted by

d and U respectively, so that d = U†
√
ABU . Consider an

2M × 2M matrix X defined as

X =
1
√

2

(
U U

√
ABB†

−U U
√
ABB†

)
. (A.3)

It is easy to show that X is unitary. Direct computation
allows us to verify that X consists of eigenvectors of C, so
that

XCX† =

(
d 0
0 − d

)
, (A.4)

which proves the lemma.
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